
RESEARCH PAPER

Color quantization using an accelerated Jancey
k-means clustering algorithm

Harrison Bounds, M. Emre Celebi ,* and Jordan Maxwell
University of Central Arkansas, Department of Computer Science and Engineering, Conway, Arkansas,

United States

ABSTRACT. Color quantization (CQ) is a fixed-rate vector quantization developed for color
images to reduce their number of distinct colors while keeping the resulting distortion
to a minimum. Various clustering algorithms have been adapted to the CQ problem
over the past 40 years. Among these, hierarchical algorithms are generally more
efficient (i.e., faster), whereas partitional ones are more effective (in minimizing
distortion). Among the partitional algorithms, the effectiveness and efficiency of the
Lloyd (or batch) k -means algorithm have been shown by multiple recent studies. We
investigate an alternative, lesser-known k -means algorithm proposed by Jancey,
which differs from Lloyd k -means (LKM) in the way it updates the cluster centers
at the end of each iteration. To obtain a competitive color quantizer, we develop
a weighted variant of Jancey k -means (JKM) and then accelerate the weighted
algorithm using the triangle inequality. Through extensive experiments on 100 color
images, we demonstrate that, with the proposed modifications, JKM outperforms
LKM significantly in terms of efficiency without sacrificing effectiveness. In addition,
the proposed JKM-based color quantizer is as straightforward to implement as the
popular LKM color quantizer.

© 2024 SPIE and IS&T [DOI: 10.1117/1.JEI.33.5.053052]

Keywords: color quantization; clustering; Lloyd k-means; batch k-means; Jancey
k-means; triangle inequality

Paper 240382G received Apr. 14, 2024; revised Aug. 15, 2024; accepted Sep. 23, 2024; published Oct.
22, 2024.

1 Introduction
Color images have become ubiquitous over the past 20 years.1 These images often contain a great
many colors, posing a challenge to display, store, transmit, process, and analyze them. Color
quantization (CQ) is an image processing technique designed to reduce the number of distinct
colors in a color image while preserving its visual quality.2 By reducing the number of colors in
an image, CQ can generate replicas that are difficult to distinguish from the original.

CQ is composed of two subproblems:3 (1) palette design and (2) pixel mapping. The former
subproblem is concerned with choosing a limited set of colors, called the color palette, to re-
present the colors of the input image. This subproblem is usually formulated as a large-scale
data clustering problem,4 which is computationally hard in most settings.5 On the other hand,
the latter subproblem involves mapping each pixel in the input image to its nearest palette
color, which can be solved exactly using a simple linear-time algorithm. Thus, the vast majority
of the CQ literature deals with the palette design subproblem, which is also the main focus of
this paper.

*Address all correspondence to M. Emre Celebi, ecelebi@uca.edu

1017-9909/2024/$28.00 © 2024 SPIE and IS&T

Journal of Electronic Imaging 053052-1 Sep∕Oct 2024 • Vol. 33(5)

https://orcid.org/0000-0002-2721-6317
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
mailto:ecelebi@uca.edu
mailto:ecelebi@uca.edu

CQ originally aimed to overcome the color depth limitations of early color display devices.2

Although 24-bit color displays have become prevalent, CQ is still used in many visual computing
applications, including6 non-photorealistic rendering, image matting, image dehazing, image
compression, color-to-grayscale conversion, image watermarking/steganography, image seg-
mentation, content-based image retrieval, color analysis, color-texture analysis, saliency detec-
tion, and skin detection.

CQ algorithms can be categorized in various ways based on their palette design phase.
For example, color palettes can be designed to be image-independent or image-dependent.7

An image-independent palette is a universal color palette designed to represent a variety of
images. In contrast, an image-dependent palette is a custom color palette designed to represent
the color distribution of a specific image. The majority of CQ algorithms belong to the latter
category. CQ algorithms can also be categorized based on the clustering algorithm5 used in
their palette design phase. Many clustering algorithms have been adapted to the palette design
subproblem over the past 40 years.6 Hierarchical clustering algorithms find nested clusters in
a top-down or bottom-up manner. On the other hand, partitional clustering algorithms discover
clusters simultaneously without imposing a hierarchical structure on the data. Hierarchical algo-
rithms dominated the early CQ literature mainly due to their efficiency. The more recent liter-
ature, however, focuses primarily on partitional algorithms that promise greater effectiveness at
the expense of more computation.

Among the many partitional algorithms used for palette design, the Lloyd (or batch) k-means
algorithm8–11 has been shown to be both effective and efficient by multiple studies.12–20 The
most comprehensive study among these was conducted by Celebi and Pérez-Delgado,20 where
the authors determined that a variant of Lloyd k-means (LKM) proposed by Celebi15,16 was one
of the best among 21 CQ algorithms published between 1980 and 2022. In fact, this k-means–
based CQ algorithm has been independently integrated into the Android Open Source Project
(available at Ref. 21).

In this paper, we investigate a lesser-known (at the time of this writing, Lloyd’s paper11 has
been cited over 20,000 times, whereas Jancey’s paper9 has been cited only ≈250 times) k-means
algorithm proposed by Jancey.9 The Lloyd and Jancey k-means (JKM) algorithms have identical
assignment steps, where each data point is assigned to the nearest cluster center. The two algo-
rithms differ in their update steps. Lloyd k-means updates each cluster center to be the centroid of
the data points assigned to it, whereas Jancey k-means updates each cluster center as a linear
combination of itself and the centroid of the data points assigned to it. This linear combination
is controlled by a user-defined parameter (α), which allows Jancey k-means to take larger steps
toward a local minimum. Accordingly, Jancey k-means is expected to converge faster than Lloyd
k-means. Our comprehensive experiments show that this is indeed the case. In fact, we dem-
onstrate that, with suitable modifications, Jancey k-means outperforms Lloyd k-means signifi-
cantly in terms of efficiency without sacrificing effectiveness.

The rest of this paper is structured as follows. Section 2 introduces the two k-means variants,
their adaptation to weighted data, their acceleration using the triangle inequality, and their
initialization. Section 3 presents the objective and subjective assessment of the two k-means
variants and discusses our findings. Finally, Sec. 4 concludes the paper and provides directions
for future work.

2 k-Means and Its Variants
In this section, we present an overview of the Lloyd and Jancey k-means algorithms, their exten-
sions for weighted data, a practical strategy to accelerate the two algorithms and their weighted
variants using the triangle inequality, and, finally, their initialization.

2.1 Lloyd k-Means Algorithm
Lloyd k-means is the simplest and most popular partitional clustering algorithm.22 Given a data-
set X ¼ fx1; : : : ; xNg ⊂ RD and a positive integer K > 1, the goal of LKM is to partition X
into K non-overlapping clusters fP1; : : : ;PKg. Each cluster Pi has a center ci, which is usually
selected uniformly at random from X . Starting from this initial configuration, the algorithm pro-
ceeds with an assignment step followed by an update step. In the assignment step, each data point

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-2 Sep∕Oct 2024 • Vol. 33(5)

is assigned to its nearest center with respect to the squared Euclidean (l2
2) distance, whereas in

the update step, each center is recomputed by averaging the data points assigned to it. These steps
are alternated until the algorithm converges. It can be shown that each iteration either decreases
the sum of squared error (SSE), SSE ¼Px∈XdSEðx; fc1; : : : ; cKgÞ, where dSEðx; CÞ is the l2

2

distance between data point x and its nearest center in C, or leaves it unchanged (indicating
convergence).

Consider an input image I in a CQ application. In this context, the dataset X represents
the pixels in I, N is the number of pixels in I, D is the number of color channels (for RGB
images, we have D ¼ 3), and K is the number of desired colors in the quantized output image.

The pseudocode of the LKM algorithm is given below (superscripts denote iteration
numbers).

1. Initialization: Initialize the K cluster centers Cð0Þ ¼ fcð0Þ1 ; : : : ; cð0ÞK g and set the iteration
counter to one (t ¼ 1).

2. Assignment: Set n1 ¼ · · ·¼ nK ¼ 0. For each j ∈ f1; : : : ; Ng, assign data point xj to its

nearest center in Cðt−1Þ, that is, ci� with i� ¼ arg mini∈f1;: : : ;Kgkxj − cðt−1Þi k2
2
, where k · k2

denotes the l2 norm, and increment the size ni� of the corresponding cluster

PðtÞ
i� (ni� ¼ ni� þ 1).

3. Update: Update each cluster center ci to be the centroid of the data points assigned to it,

that is, cðtÞi ¼ ð1∕niÞ
P

x∈PðtÞ
i
x.

4. Termination: If the termination criterion is satisfied (see below), terminate the algorithm.
Otherwise, increment the iteration counter (t ¼ tþ 1) and return to step 2.

In this study, we terminate LKM once the clusters stabilize (i.e., the data points assigned to
each cluster stop changing). It is important to stress that, for LKM, the clusters stabilize if and
only if their centers stabilize. Upon termination, LKM converges to a local minimum of its objec-
tive. As SSE is a nonsmooth and nonconvex objective with numerous local minima, step 1, ini-
tialization, is the most crucial step.23 Poorly initialized centers can lead to empty clusters, slower
convergence, or getting trapped in a shallow local minimum.

LKM’s popularity can be attributed to multiple reasons. In addition to being a simple algo-
rithm to implement, its time complexity is linear in N, D, and K, meaning that it can be used to
cluster large datasets or initialize computationally more expensive clustering algorithms. LKM is
also guaranteed to converge to a local minimum in a finite number of iterations24 and is insen-
sitive to the order in which the data points are processed.

As LKM is an iterative algorithm, its execution time depends on the number of times it
iterates until reaching convergence. This number can vary remarkably based on initialization,
dataset characteristics, and termination criterion. Although it has a linear time complexity,
LKM can be computationally expensive due to its iterative nature. There are many ways to accel-
erate the algorithm, including sampling, data compression, dimensionality reduction, numerical
approximations, geometric identities, and better initialization. Unfortunately, most of these
approaches sacrifice simplicity, accuracy, or convergence guarantee for efficiency.

2.2 Jancey k-Means Algorithm

Jancey9 and later Ostresh,25 proposed an algorithm very similar to LKM. Let PðtÞ
i denote cluster

i (i ∈ f1; : : : ; Kg) with center cðtÞi at the end of iteration t (t ¼ 1; 2; : : :). Recall that in LKM,
at the end of iteration t, each center is recomputed as the centroid of its cluster, that is

EQ-TARGET;temp:intralink-;e001;117;164cðtÞi ¼ mðtÞ
i ; (1)

where mðtÞ
i ¼ ð1∕niÞ

P
x∈PðtÞ

i
x denotes the centroid of PðtÞ

i .

In Jancey’s k-means algorithm, each center is recomputed as a linear combination of itself
and the centroid of its cluster, that is

EQ-TARGET;temp:intralink-;e002;117;100cðtÞi ¼ αmðtÞ
i þð1 − αÞcðt−1Þi ; (2)

EQ-TARGET;temp:intralink-;e003;117;64¼ cðt−1Þi þ α½mðtÞ
i − cðt−1Þi �; (3)

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-3 Sep∕Oct 2024 • Vol. 33(5)

where α is a “relaxation factor.” Figure 1 illustrates the above equation in two dimensions. Note
that this equation can be viewed as an example of the well-known successive over-relaxation
method26 for solving a linear system of equations.

The relaxation factor α influences JKM’s behavior as follows:

• The algorithm is guaranteed to converge for α ∈ ð0;2Þ.27,28
• Jancey’s choice of α ¼ 2 corresponds to reflecting the old center cðt−1Þi through the new

centroid mðtÞ
i [Ref. 29, pp. 161–162], as illustrated in Fig. 1. However, with this particular

α value, JKM may converge more slowly than LKM or even fail to converge due to points
oscillating among clusters.

• The α value yielding optimal convergence rates25,27 can be shown to be between 1 and 2
(the green line segment in Fig. 1), in which case Eq. (2)/(3) is said to be an “over-
relaxation.” In particular, the optimal α is near 1 if the clusters are well separated. On the
other hand, the optimal α is near 2 if the clusters are poorly separated. Therefore, JKM with
α ∈ ð1; 2Þ takes larger steps toward a local minimum and thus is expected to converge
faster than LKM unless the dataset is well-clusterable.

• For α ∈ ð0; 1�, Eq. (2)/(3) denotes a convex combination, that is, the new center cðtÞi lies on

the line segment joining the old center cðt−1Þi and the new centroidmðtÞ
i (the red line segment

in Fig. 1). For the special case of α ¼ 1, Eq. (2)/(3) reduces to the LKM center update
equation, Eq. (1). On the other hand, for α ∈ ð0;1Þ, Eq. (2)/(3) is said to be an under-
relaxation. In this paper, we do not consider this regime, as it can be shown to yield a
suboptimal convergence rate.28

The pseudocode of JKM is identical to that of LKM with one exception: the center update equa-
tion in step 3 should be Eq. (2)/(3). As the two algorithms are so similar, many acceleration
techniques designed for LKM can also be adapted to JKM.

2.3 Weighted k-Means Algorithms
LKM can be modified to handle weighted data, X ¼ fx1: : : xNg ⊂ RD, where each data point xj
is assigned a nonnegative weight wj. Without loss of generality, we assume that the weights are
normalized and add up to one, that is,

P
N
j¼1 wj ¼ 1.

The objective of the weighted LKM (WLKM) algorithm is identical to that of its unweighted
counterpart, LKM, except the distances are weighted multiplicatively. In the weighted case,

the optimal center cðtÞi for cluster PðtÞ
i at the end of iteration t is given by the weighted centroid

of PðtÞ
i

EQ-TARGET;temp:intralink-;e004;114;143cðtÞi ¼ 1P
xj∈P

ðtÞ
i
wj

X
xj∈P

ðtÞ
i

wjxj: (4)

The pseudocode of WLKM is identical to that of LKM, with two exceptions: the cluster size
update equation in step 2 should be ni� ¼ ni� þwj, whereas the center update equation in step 3
should be Eq. (4). On the other hand, given the pseudocode of WLKM, the pseudocode of

Fig. 1 Illustration of the Jancey center update equation in two dimensions.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-4 Sep∕Oct 2024 • Vol. 33(5)

weighted JKM (WJKM) can be obtained by substituting the center update equation with the
following:

EQ-TARGET;temp:intralink-;sec2.3;117;712cðtÞi ¼ cðt−1Þi þ α

1P

xj∈P
ðtÞ
i
wj

X
xj∈P

ðtÞ
i

wjxj − cðt−1Þi

!
:

Given a color image I, a time- and memory-efficient way to compute the “frequency” fj of a
pixel xj ∈ I (i.e., the number of times the color xj occurs in I) is by means of a hash table that
uses chaining for collision resolution and a universal hash function of the form haðr; g; bÞ ¼
ðarrþ aggþ abbÞmodP, where ðr; g; bÞ are the red, green, and blue components of an input
color, respectively; P is a prime number; and the elements of sequence a ¼ ðar; ag; abÞ are
selected randomly from the set f0; 1; : : : ; P − 1g.6 Once the hash table is populated (by inserting
the color of each pixel in I into the table), the “normalized weight” wj of xj is computed by
wj ¼ fj∕N, where N is the number of pixels in I.

2.4 Triangle Inequality Elimination Technique
The triangle inequality elimination (TIE) technique accelerates LKM by reducing the number of
distance computations it performs in each iteration. For a given data point x, centers ci and cι̂,
and a metric dð·Þ, the triangle inequality states that dðci; cι̂Þ ≤ dðx; ciÞ þ dðx; cι̂Þ. Therefore, if
2dðx; ciÞ ≤ dðci; cι̂Þ, we can omit the computation of dðx; cι̂Þ knowing that dðx; ciÞ ≤ dðx; cι̂Þ.
This inequality is valid for metrics such as d ¼ l2. For the non-metric case of d ¼ l2

2, the
inequality becomes 4kx − cik22 ≤ kci − cι̂k22.

At the beginning of each iteration, TIE precomputes the
�K
2

�
pairwise l2

2 distances between

the K centers and stores them in a K × K matrix. The rows of this matrix are then sorted indi-
vidually in increasing order. In other words, each center’s distances to the other ðK − 1Þ centers
are sorted. To determine the nearest center to a given data point x, TIE begins with the current
nearest center for x, say ci (all data points can be assigned to an arbitrary center, e.g., c1, before
the first iteration) and searches through the centers in order of increasing distance from ci using
the aforementioned triangle inequality test. If the test succeeds, the search can be aborted, as the
test will succeed for the remaining centers in the sorted list. Otherwise, the l2

2 distance between x
and the current center under consideration is computed. As TIE accelerates the time-consuming
assignment step of LKM, which is identical to that of JKM, the same technique can also be used
to accelerate JKM.

LKM/JKM can be accelerated using a variety of geometric techniques,30,31 many of which
are based on binary space partitioning trees such as k-d trees32 or more elaborate formulations of
TIE.30 Some of these techniques33 pay off only in high dimensions, making them unsuitable for
low-dimensional data such as color image data. Others are difficult to understand (or implement)
and require computationally expensive preprocessing.32,34,35 By contrast, TIE is simple, intuitive,
and practical, making it an ideal strategy for accelerating LKM/JKM for CQ. Originally proposed
by Chen and Pan36 for accelerating vector quantization, TIE was adapted to CQ by Hu and Su,13

Hu et al.,14 and Celebi.15,16 For a detailed pseudocode, refer to Celebi.6

2.5 Cluster Center Initialization
As explained in Sec. 2.1, cluster center initialization is crucial for the success of LKM/JKM.
To achieve a successful initialization, we utilize the maximin algorithm.37,38 Maximin begins
with an arbitrary data point taken as the first center c1. The next center ci (i ∈ f2; : : : ; Kg)
is selected as the data point with the largest distance from centers fc1; : : : ; ci−1g, that is,
ci ¼ arg maxx∈X minðdðx; c1Þ; : : : ; dðx; ci−1ÞÞ, where dð·; ·Þ is a metric, which is usually taken
as l2. The algorithm can be implemented in OðNKÞ time.

The pseudocode of maximin is given below. Note that we use the centroid of X as the first
center to ensure determinism.

1. Let dj denote the distance of xj to its nearest center (initially, dj ¼ ∞), and dmax denote the
maximum such distance in X . Set c1 ¼ ð1∕NÞPx∈Xx, and the index i of the next center
(to be selected) to i ¼ 2.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-5 Sep∕Oct 2024 • Vol. 33(5)

2. Set dmax ¼ −∞. For each j ∈ f1; : : : ; Ng, update dj, if necessary, as follows: if
dðxj; ci−1Þ < dj, then set dj ¼ dðxj; ci−1Þ. Update dmax, if necessary, as follows: if
dmax < dj, set dmax ¼ dj, and save the index of the current point as j� ¼ j.

3. Set ci ¼ xj� . If i < K, increment index i (i ¼ iþ 1) and return to step 2; otherwise,
terminate the algorithm.

Many algorithms can be used to initialize k-means–like partitional clustering algorithms.23

Among these, maximin is one of the most popular for several reasons, including its simple,
parameter-free, and deterministic nature, and good performance in a variety of applications.
Maximin was introduced to the CQ literature by Houle and Dubois39 and popularized by
Goldberg40 and Xiang.41 More recently, the algorithm has been used as an effective initializer
for k-means–based CQ algorithms by Thompson et al.42 and Abernathy and Celebi.19

3 Objective and Subjective Assessment
In this section, we first describe our experimental setup, which includes the image set, perfor-
mance measures, statistical tests, and parameter configuration. We then present an objective
assessment of the LKM and JKM algorithms. We conclude the section with a brief subjective
assessment of the two k-means variants.

3.1 Experimental Setup
The plain algorithms, namely, LKM and JKM, and their weighted variants accelerated using TIE,
namely, accelerated LKM (ALKM) and accelerated JKM (AJKM), were tested on CQ100 (avail-
able at Ref. 43), a diverse dataset of 24-bit color images specifically curated for CQ research.20

CQ100 contains 100 images, each with a resolution of 768 × 512 or 512 × 768 pixels.
The effectiveness of an algorithm was quantified using two fidelity measures: mean squared

error (MSE) and multi-scale structural similarity (MS-SSIM).
MSE is the most popular fidelity measure in CQ6 and is defined as follows:

EQ-TARGET;temp:intralink-;sec3.1;114;405MSEðI; ĨÞ ¼ 1

HW

XH
r¼1

XW
c¼1

kIðr; cÞ − Ĩðr; cÞk22;

where I and ~I denote the original input image and quantized output image, respectively, each
with a resolution of W ×H pixels. MSE values fall into the range ½0;3 × 2552�, with smaller
values indicating a better match among the two images. Observe that MSE is simply a normal-
ized variant of SSE, which is precisely the objective LKM and JKM minimize locally.

MSE is a simple fidelity measure, both conceptually and computationally. However, it dis-
regards the characteristics of the human visual system. Structural similarity (SSIM)44 addresses
this shortcoming of MSE by combining the luminance, contrast, and structural differences
among the two images that are being compared. MS-SSIM,45 on the other hand, is a multi-scale
variant of SSIM that incorporates variations in image resolution and viewing conditions. Note
that, unlike MSE, SSIM and MS-SSIM are similarity measures whose values fall into the range
[0, 1], with larger values indicating a better match between the two images. For mathematical and
computational details of SSIM and MS-SSIM, refer to Refs. 44–47.

MS-SSIM is a fidelity measure recommended by both Ramella48 and Pérez-Delgado and
Celebi,49 the only studies to date that focus on the objective evaluation of CQ algorithms.
Therefore, in this study, we employed MS-SSIM along with MSE to quantify the effectiveness
of a CQ algorithm.

The efficiency of an algorithm was quantified using two measures: central processing unit
(CPU) time in milliseconds (ms) averaged over 10 independent runs and number iterations until
reaching convergence. Unlike CPU time, the number of iterations is an implementation-
independent efficiency measure. Note that we performed multiple runs of each algorithm solely
to obtain more accurate time measurements, as there is no randomness in any of the algorithms
presented in this paper. All algorithms were implemented in C++ and executed on a 2.60-GHz
Intel Core i7-8850H CPU.

To determine if there are any statistically significant differences among the algorithms,
we employed two nonparametric statistical tests:50 the Friedman test51 and the Iman–Davenport

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-6 Sep∕Oct 2024 • Vol. 33(5)

test.52 These tests are alternatives to the parametric two-way analysis of variance (ANOVA) test.
Their advantage over ANOVA is that they do not require normality or homoscedasticity, assump-
tions that are often violated in machine learning or optimization studies.53–57

Given B blocks (subjects) and T treatments (measurements), the null hypothesis (H0) of the
Friedman test is that populations within a block are identical. The alternative hypothesis (H1) is
that at least one treatment tends to yield larger (or smaller) values than at least one other treat-
ment. The test statistic is computed as follows.58 In the first step, the observations within each
block are ranked separately, so each block contains a separate set of T ranks. If ties occur, the tied
observations are given the mean of the rank positions for which they are tied. If H0 is true, the
ranks in each block should be randomly distributed over the columns (treatments). Otherwise, we
expect the lack of randomness in this distribution. For example, if a particular treatment is better
than the others, we expect small (or large) ranks to favor that column. In the second step, the
ranks in each column are summed. If H0 is true, we expect the sums to be fairly close—so close
that we can attribute differences to chance. Otherwise, we expect to see at least one difference
between pairs of rank sums so large that we cannot reasonably attribute it to sampling variability.
The test statistic is given as

EQ-TARGET;temp:intralink-;e005;117;544χ2r ¼
12

BTðTþ 1Þ
XT
j¼1

R2
j − 3BðTþ 1Þ; (5)

where Rj (j ∈ f1; 2; : : : ; Tg) is the rank sum of the j’th column. χ2r is approximately chi-square
with ðT − 1Þ degrees of freedom. H0 is rejected at the α level of significance if the value of (5)
is greater than or equal to the critical chi-square value for ðT − 1Þ degrees of freedom.

Iman and Davenport52 proposed the following alternative statistic:

EQ-TARGET;temp:intralink-;e006;117;451Fr ¼
ðB − 1Þχ2r

BðT − 1Þ − χ2r
; (6)

which is distributed according to the F-distribution with ðT − 1Þ and ðT − 1ÞðB − 1Þ degrees of
freedom. Compared with χ2r , this statistic is not only less conservative but also more accurate for
small sample sizes.52

In this study, blocks and treatments correspond to images and algorithms, respectively. For
each K ∈ f4; 16; 64; 256g, our goal was to determine if at least one algorithm is significantly
better than at least one other algorithm at the α ¼ 0.05 level of significance. If this is the case, we
performed multiple comparison testing to determine which pairs of algorithms differ signifi-
cantly. For this purpose, we employed the Bergmann–Hommel test59 (also at the α ¼ 0.05 level),
a powerful multiple comparison test that has been used successfully in various machine learning
studies.23,50,60–62 Bergmann–Hommel is a dynamic test that considers the logical relations
among the hypotheses and is strictly more powerful63 than various alternative tests that control
the family-wise error rate such as the Nemenyi,64 Holm,65 and Shaffer66 tests. Note that we per-
formed nonparametric statistical tests only for the accelerated algorithms. This is because
the Bergmann–Hommel test takes exponential time67 in the number of hypotheses (for T
treatments/algorithms, we have T × ðT − 1Þ∕2 pairwise hypotheses); thus, it cannot handle more
than ten algorithms, even on a high-performance CPU.

All algorithms have a common parameter K that denotes the number of desired colors in the
quantized image. In the experiments, we tested the following four K values: 4, 16, 64, and 256.
The lower bound was set to 4 because a typical natural image can hardly be quantized to fewer
than four colors. On the other hand, most natural images can be represented faithfully with
no more than 256 colors. Hence, the upper bound was set to 256.

JKM and its accelerated variant AJKM have an additional parameter α that controls the
degree of over-relaxation in the center updates. Recall that α ∈ ½1; 2Þ ensures rapid convergence,
and for α ¼ 1, JKM reduces to LKM. Accordingly, we tested the following five α values: 1.2, 1.4,
1.6, 1.8, and 1.99. We also tested the borderline α value of 2.0 (i.e., Jancey’s choice) for which
JKM is not guaranteed to converge. Indeed, in this case, JKM failed to converge in 194 (48.5%)
out of 400 runs (100 images × jf4; 16; 64; 256gj colors), confirming the theoretical results men-
tioned in Sec. 2.2.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-7 Sep∕Oct 2024 • Vol. 33(5)

3.2 Objective Assessment
In this section, we present the experimental results and discuss our findings for each performance
measure separately.

3.2.1 Mean squared error

Figure 2 shows the box plots of the MSE distributions for ALKM, AJKM12 (AJKM with
α ¼ 1.2), AJKM14 (AJKM with α ¼ 1.4), AJKM16 (AJKM with α ¼ 1.6), AJKM18 (AJKM
with α ¼ 1.8), and AJKM199 (AJKM with α ¼ 1.99) for K ∈ f4; 16; 64; 256g. To facilitate
comparisons, the MSE values were normalized as follows. For each input image and K value,
the MSE values obtained by the six algorithms were divided by the smallest MSE obtained on
that image. Therefore, in each case, the smaller the normalized MSE, the better (or more effec-
tive) the algorithm, with the best algorithm attaining a normalized MSE of one. Observe that
the figure compares only the accelerated algorithms. This is because, for a given input image
and K value, each such algorithm gives an identical MSE to its plain counterpart (e.g., ALKM
versus LKM).

Fig. 2 Box plots of the normalized MSE distributions for each accelerated algorithm. (a) Four col-
ors, (b) 16 colors, (c) 64 colors, and (d) 256 colors (in each subfigure, the x and y axes represent
the normalized MSE values and the CQ algorithms, respectively).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-8 Sep∕Oct 2024 • Vol. 33(5)

Table 1 gives the mean MSE rank of each CQ algorithm over the dataset for
K ∈ f4; 16; 64; 256g (higher ranks are better). The last column gives the mean of the (mean)
ranks over the four K values. Based on this last column, generally speaking, the larger the α
value, the better the algorithm.

Table 2 gives the results of the Friedman and Iman–Davenport tests forK ∈ f4; 16; 64; 256g.
For K ¼ 4 and K ¼ 16, it can be seen that both tests failed to detect a statistically significant
difference in MSE among the algorithms. In other words, the algorithms perform similarly when
K is small. This can be explained by the fact that the problem of minimizing SSE is relatively
easier for small K values because there are fewer local minima in which LKM/JKM can be
trapped.

Table 2 shows that both the Friedman and Iman–Davenport tests detected a statistically sig-
nificant difference in MSE among the algorithms for K ¼ 64 and K ¼ 256. Thus, we performed
the Bergmann–Hommel test to determine which pairs of algorithms differ significantly in each
case. The results are given in Table 3. We examine the two cases (i.e., K ¼ 64 and K ¼ 256)
separately below.

For K ¼ 64, only the five null hypotheses that involve AJKM199, namely, “ALKM
versus AJKM199,” “AJKM12 versus AJKM199,” “AJKM14 versus AJKM199,” “AJKM16
versus AJKM199,” and “AJKM18 versus AJKM199,” are rejected. As we know from Table 1
that AJKM199 has the highest (or best) mean rank for K ¼ 64, the following relationship
holds:

EQ-TARGET;temp:intralink-;sec3.2.1;117;323AJKM199 > fALKM;AJKM12;AJKM14;AJKM16;AJKM18g;

where a notation such as fA; Bg > C indicates that there is no statistically significant difference
between algorithms A and B, and these two are significantly better than algorithm C. Therefore,
the above relationship means that AJKM199 is the best algorithm with respect to MSE for
K ¼ 64, whereas the remaining five algorithms perform similarly.

Table 1 Mean MSE rank of each CQ algorithm over the dataset
for K ∈ f4; 16; 64; 256g (higher ranks are better).

Algorithm K ¼ 4 K ¼ 16 K ¼ 64 K ¼ 256 Mean

ALKM 3.61 3.36 3.26 2.88 3.28

AJKM12 3.53 3.36 3.16 2.88 3.23

AJKM14 3.54 3.26 3.22 3.28 3.32

AJKM16 3.57 3.47 3.28 3.50 3.45

AJKM18 3.59 3.85 3.60 3.98 3.75

AJKM199 3.18 3.72 4.49 4.50 3.97

Table 2 Results of the Friedman and Iman–Davenport tests for
MSE for K ∈ f4; 16; 64; 256g (✓: rejected; ✗: not rejected).

K

Friedman (α ¼ 0.05) Iman–Davenport (α ¼ 0.05)

χ2r ð5Þ p H0 F r ð5;495Þ p H0

4 3.754 0.585 ✗ 0.749 0.587 ✗

16 7.694 0.174 ✗ 1.547 0.174 ✗

64 37.021 5.93 × 10−07 ✓ 7.916 3.45 × 10−07 ✓

256 58.923 6.23 × 10−11 ✓ 13.225 4.16 × 10−12 ✓

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-9 Sep∕Oct 2024 • Vol. 33(5)

For K ¼ 256, the situation is not as clear. In this case, the null hypotheses that involve only
one of AJKM18 and AJKM199 (except “AJKM16 versus AJKM18”) are rejected. Combined
with the mean rank information for K ¼ 256 given in Table 1, we can infer the following rela-
tionships:
EQ-TARGET;temp:intralink-;sec3.2.1;114;350 fAJKM18;AJKM199g > fALKM;AJKM12;AJKM14g;

AJKM199 > fALKM;AJKM12;AJKM14;AJKM16g:

The above relationships can be interpreted as follows:

• fAJKM18;AJKM199g is the best group of algorithms.
• fALKM;AJKM12;AJKM14g is the worst group of algorithms.
• AJKM16 is in between (it cannot be unambiguously classified because the Bergmann–

Hommel test rejects “AJKM16 versus AJKM199” but not “AJKM16 versus AJKM18”).

3.2.2 Multi-scale structural similarity

Figure 3 shows the box plots of the MS-SSIM distributions for ALKM, AJKM12, AJKM14,
AJKM16, AJKM18, and AJKM199 for K ∈ f4; 16; 64; 256g. As in Fig. 2, this figure compares
only the accelerated algorithms. This is because, for a given input image and K value, each such
algorithm gives an identical MS-SSIM to its plain counterpart (e.g., ALKM versus LKM). Recall
that, unlike MSE, MS-SSIM values are normalized in ½0; 1�, and the larger the MS-SSIM, the
better (or more effective) the algorithm.

Table 4 gives the mean MS-SSIM rank of each CQ algorithm over the dataset for
K ∈ f4; 16; 64; 256g (lower ranks are better). The last column gives the mean of the (mean)
ranks over the four K values. Based on this last column, the larger the α value, the better the
algorithm is on average.

Table 3 Results of the Bergmann–Hommel test for MSE for
K ∈ f64; 256g (✓: rejected; ✗: not rejected).

Null hypothesis K ¼ 64 K ¼ 256

ALKM versus AJKM12 ✗ ✗

ALKM versus AJKM14 ✗ ✗

ALKM versus AJKM16 ✗ ✗

ALKM versus AJKM18 ✗ ✓

ALKM versus AJKM199 ✓ ✓

AJKM12 versus AJKM14 ✗ ✗

AJKM12 versus AJKM16 ✗ ✗

AJKM12 versus AJKM18 ✗ ✓

AJKM12 versus AJKM199 ✓ ✓

AJKM14 versus AJKM16 ✗ ✗

AJKM14 versus AJKM18 ✗ ✓

AJKM14 versus AJKM199 ✓ ✓

AJKM16 versus AJKM18 ✗ ✗

AJKM16 versus AJKM199 ✗ ✓

AJKM18 versus AJKM199 ✓ ✗

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-10 Sep∕Oct 2024 • Vol. 33(5)

Table 5 gives the results of the Friedman and Iman–Davenport tests forK ∈ f4; 16; 64; 256g.
For K ¼ 4 and K ¼ 16, it can be seen that both tests failed to detect a statistically significant
difference in MS-SSIM among the algorithms. In other words, the algorithms perform similarly
when K is small. Recall that such was also the case for MSE.

Fig. 3 Box plots of the MS-SSIM distributions for each accelerated algorithm. (a) Four colors,
(b) 16 colors, (c) 64 colors, and (d) 256 colors (in each subfigure, the x and y axes represent
the MS-SSIM values and the CQ algorithms, respectively).

Table 4 Mean MS-SSIM rank of each CQ algorithm over the
dataset for K ∈ f4; 16; 64; 256g (lower ranks are better).

Algorithm K ¼ 4 K ¼ 16 K ¼ 64 K ¼ 256 Mean

ALKM 3.59 3.66 3.47 4.47 3.80

AJKM12 3.68 3.48 3.80 4.12 3.77

AJKM14 3.63 3.69 3.57 3.79 3.67

AJKM16 3.44 3.57 3.75 3.39 3.54

AJKM18 3.20 3.18 3.52 3.02 3.23

AJKM199 3.47 3.43 2.89 2.21 3.00

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-11 Sep∕Oct 2024 • Vol. 33(5)

Table 5 shows that both the Friedman and Iman–Davenport tests detected a statistically sig-
nificant difference in MS-SSIM among the algorithms for K ¼ 64 and K ¼ 256. Thus, we per-
formed the Bergmann–Hommel test to determine which pairs of algorithms differ significantly in
each case. The results are given in Table 6. We examine the two cases separately below.

For K ¼ 64, only the following two null hypotheses are rejected: “AJKM12 versus
AJKM199” and “AJKM16 versus AJKM199.” Combined with the mean rank information for
K ¼ 64 given in Table 4, we can infer two alternative classifications:

• fALKM;AJKM14;AJKM18;AJKM199g and fAJKM12;AJKM16g
• fALKM;AJKM12;AJKM14;AJKM16;AJKM18g and AJKM199.

Unfortunately, the only relationship that can be ascertained among the algorithms is
AJKM199 > fAJKM12;AJKM16g, which means AJKM199 is better than both AJKM12 and
AJKM16, which perform similarly.

Table 5 Results of the Friedman and Iman–Davenport tests for
MS-SSIM for K ∈ f4;16;64;256g (✓: rejected; ✗: not rejected).

K

Friedman (α ¼ 0.05) Iman–Davenport (α ¼ 0.05)

χ2r ð5Þ p H0 F r ð5;495Þ p H0

4 4.401 0.493 ✗ 0.879 0.495 ✗

16 4.881 0.431 ✗ 0.976 0.432 ✗

64 15.166 0.010 ✓ 3.097 0.009 ✓

256 94.743 5.90 × 10−11 ✓ 23.145 3.33 × 10−16 ✓

Table 6 Results of the Bergmann–Hommel test for MS-SSIM for
K ∈ f64;256g (✓: rejected; ✗: not rejected).

Null hypothesis K ¼ 64 K ¼ 256

ALKM versus AJKM12 ✗ ✗

ALKM versus AJKM14 ✗ ✓

ALKM versus AJKM16 ✗ ✓

ALKM versus AJKM18 ✗ ✓

ALKM versus AJKM199 ✗ ✓

AJKM12 versus AJKM14 ✗ ✗

AJKM12 versus AJKM16 ✗ ✓

AJKM12 versus AJKM18 ✗ ✓

AJKM12 versus AJKM199 ✓ ✓

AJKM14 versus AJKM16 ✗ ✗

AJKM14 versus AJKM18 ✗ ✓

AJKM14 versus AJKM199 ✗ ✓

AJKM16 versus AJKM18 ✗ ✗

AJKM16 versus AJKM199 ✗ ✓

AJKM18 versus AJKM199 ✗ ✓

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-12 Sep∕Oct 2024 • Vol. 33(5)

For K ¼ 256, all the null hypotheses are rejected but the following four: “ALKM versus
AJKM12,” “AJKM12 versus AJKM14,” “AJKM14 versus AJKM16,” and “AJKM16 versus
AJKM18.” Combined with the mean rank information for K ¼ 256 given in Table 4, we can
infer the following relationship:

EQ-TARGET;temp:intralink-;sec3.2.2;117;688AJKM199 > fAJKM16;AJKM18g > fALKM;AJKM12g;
which can be interpreted as follows:

• AJKM199 is the best algorithm.
• fALKM;AJKM12g is the worst group of algorithms.
• fAJKM16;AJKM18g and AJKM14 are in between (AJKM14 cannot be unambiguously

classified because the Bergmann–Hommel test rejects “AJKM14 versus AJKM18” but not
“AJKM12 versus AJKM14” or “AJKM14 versus AJKM16”).

3.2.3 CPU time

Figure 4 shows the box plots of the CPU time distributions for LKM, JKM12 (JKM with
α ¼ 1.2), JKM14 (JKM with α ¼ 1.4), JKM16 (JKM with α ¼ 1.6), JKM18 (JKM with
α ¼ 1.8), JKM199 (JKM with α ¼ 1.99), and the corresponding accelerated algorithms, namely,

Fig. 4 Box plots of the normalized CPU time distributions for each algorithm. (a) Four colors,
(b) 16 colors, (c) 64 colors, and (d) 256 colors (in each subfigure, the x and y axes represent
the normalized CPU times and the CQ algorithms, respectively).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-13 Sep∕Oct 2024 • Vol. 33(5)

ALKM, AJKM12, AJKM14, AJKM16, AJKM18, and AJKM199, respectively. The CPU times
were normalized as before, so that the fastest (or most efficient) algorithm took a normalized
CPU time of one unit in each case. Observe that, for each K value, JKM199 is considerably
slower than its rivals. In fact, JKM199’s inefficiency stretches the x-axis so much that it becomes
difficult to appreciate the differences among the other algorithms. Therefore, in Fig. 5, we give
the same box plots with the JKM199 data removed.

Table 7 gives the mean CPU time rank of each CQ algorithm over the dataset for
K ∈ f4; 16; 64; 256g (higher ranks are better). The last column gives the mean of the (mean)
ranks over the four K values.

Table 8 shows that both the Friedman and Iman–Davenport tests detected a statistically
significant difference in CPU time among the algorithms for each K value tested. Thus, we per-
formed the Bergmann–Hommel test to determine which pairs of algorithms differ significantly
in each case. The results are given in Table 9. We examine the four cases separately below.

For K ¼ 4, all the null hypotheses are rejected but the following two: “ALKM versus
AJKM18” and “AJKM14 versus AJKM16.” Combined with the mean rank information for
K ¼ 4 given in Table 7, we can infer the following relationship:

EQ-TARGET;temp:intralink-;sec3.2.3;114;544fAJKM14;AJKM16g > AJKM12 > fALKM;AJKM18g > AJKM199;

Fig. 5 Box plots of the normalized CPU time distributions for each algorithm but JKM199. (a) Four
colors, (b) 16 colors, (c) 64 colors, and (d) 256 colors (in each subfigure, the x and y axes represent
the normalized CPU times and the CQ algorithms, respectively).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-14 Sep∕Oct 2024 • Vol. 33(5)

Table 8 Results of the Friedman and Iman–Davenport tests for
CPU time for K ∈ f4; 16; 64; 256g (✓: rejected; ✗: not rejected).

K

Friedman (α ¼ 0.05) Iman–Davenport (α ¼ 0.05)

χ2r ð5Þ p H0 F r ð5;495Þ p H0

4 334.359 1.39 × 10−10 ✓ 199.838 −2.22 × 10−16 ✓

16 327.367 1.83 × 10−10 ✓ 187.736 7.73 × 10−112 ✓

64 191.003 9.54 × 10−11 ✓ 61.196 1.31 × 10−49 ✓

256 131.539 7.47 × 10−11 ✓ 35.342 2.22 × 10−16 ✓

Table 9 Results of the Bergmann–Hommel test for CPU time for
K ∈ f4; 16; 64; 256g (✓: rejected; ✗: not rejected).

Null hypothesis K ¼ 4 K ¼ 16 K ¼ 64 K ¼ 256

ALKM versus AJKM12 ✓ ✓ ✓ ✗

ALKM versus AJKM14 ✓ ✓ ✓ ✓

ALKM versus AJKM16 ✓ ✓ ✓ ✓

ALKM versus AJKM18 ✗ ✓ ✓ ✓

ALKM versus AJKM199 ✓ ✓ ✓ ✓

AJKM12 versus AJKM14 ✓ ✓ ✓ ✓

AJKM12 versus AJKM16 ✓ ✓ ✓ ✓

AJKM12 versus AJKM18 ✓ ✓ ✓ ✓

AJKM12 versus AJKM199 ✓ ✓ ✗ ✓

AJKM14 versus AJKM16 ✗ ✗ ✓ ✗

AJKM14 versus AJKM18 ✓ ✗ ✓ ✓

AJKM14 versus AJKM199 ✓ ✓ ✓ ✗

AJKM16 versus AJKM18 ✓ ✗ ✗ ✗

AJKM16 versus AJKM199 ✓ ✓ ✓ ✓

AJKM18 versus AJKM199 ✓ ✓ ✓ ✓

Table 7 Mean CPU time rank of each CQ algorithm over the
dataset for K ∈ f4; 16; 64; 256g (higher ranks are better).

Algorithm K ¼ 4 K ¼ 16 K ¼ 64 K ¼ 256 Mean

ALKM 2.75 2.34 1.95 2.17 2.30

AJKM12 3.94 3.25 3.01 2.63 3.21

AJKM14 5.02 4.50 3.97 3.83 4.33

AJKM16 5.03 4.78 4.59 4.39 4.69

AJKM18 3.27 4.95 4.87 4.58 4.41

AJKM199 1.00 1.19 2.63 3.41 2.06

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-15 Sep∕Oct 2024 • Vol. 33(5)

which can be interpreted as follows:

• fAJKM14;AJKM16g is the best group of algorithms.
• AJKM199 is the worst algorithm.
• AJKM12 and fALKM;AJKM18g are in between, with the former being better than the

latter.

For K ¼ 16, all the null hypotheses are rejected but the following three: “AJKM14 versus
AJKM16,” “AJKM14 versus AJKM18,” and “AJKM16 versus AJKM18.” Combined with the
mean rank information for K ¼ 16 given in Table 7, we can infer the following relationship:

EQ-TARGET;temp:intralink-;sec3.2.3;114;621fAJKM14;AJKM16;AJKM18g > AJKM12 > ALKM > AJKM199;

which can be interpreted as follows:

• fAJKM14;AJKM16;AJKM18g is the best group of algorithms.
• AJKM199 is the worst algorithm.
• AJKM12 and ALKM are in between, with the former being better than the latter.

For K ¼ 64, all the null hypotheses are rejected but the following two: “AJKM12 versus
AJKM199” and “AJKM16 versus AJKM18.” Combined with the mean rank information for
K ¼ 64 given in Table 7, we can infer the following relationship:

EQ-TARGET;temp:intralink-;sec3.2.3;114;490fAJKM16;AJKM18g > AJKM14 > fAJKM12;AJKM199g > ALKM;

which can be interpreted as follows:

• fAJKM16;AJKM18g is the best group of algorithms.
• ALKM is the worst algorithm.
• AJKM14 and fAJKM12;AJKM199g are in between, with the former being better than the

latter.

For K ¼ 256, all the null hypotheses are rejected but the following four: “ALKM versus
AJKM12,” “AJKM14 versus AJKM16,” “AJKM14 versus AJKM199,” and “AJKM16 versus
AJKM18.” Combined with the mean rank information for K ¼ 256 given in Table 7, we can
infer the following relationships:
EQ-TARGET;temp:intralink-;sec3.2.3;114;335 fAJKM16;AJKM18g > AJKM199 > fALKM;AJKM12g;

AJKM18 > fAJKM14;AJKM199g > fALKM;AJKM12g:
The above relationships can be interpreted as follows:

• fAJKM16;AJKM18g is the best group of algorithms.
• fALKM;AJKM12g is the worst group of algorithms.
• fAJKM14;AJKM199g is in between.

3.2.4 Number of iterations

Figure 6 shows the box plots of the number of iterations distributions for ALKM, AJKM12,
AJKM14, AJKM16, AJKM18, and AJKM199. As in Figs. 2 and 3, this figure compares only
the accelerated algorithms. This is because each such algorithm iterates an identical number of
times until reaching convergence as its plain counterpart (e.g., ALKM versus LKM). To facilitate
comparisons, the number of iterations was also normalized as in the case of MSE.

Table 10 gives the mean number of iterations rank of each CQ algorithm over the dataset for
K ∈ f4; 16; 64; 256g (higher ranks are better). The last column gives the mean of the (mean)
ranks over the four K values.

Table 11 shows that both the Friedman and Iman–Davenport tests detected a statistically
significant difference in the number of iterations among the algorithms for each K value tested.
Thus, we performed the Bergmann–Hommel test to determine which pairs of algorithms differ

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-16 Sep∕Oct 2024 • Vol. 33(5)

significantly in each case. The results are given in Table 12. We examine the four cases sepa-
rately below.

For K ¼ 4, all the null hypotheses are rejected but the following two: “ALKM versus
AJKM18” and “AJKM14 versus AJKM16.” Combined with the mean rank information for
K ¼ 4 given in Table 10, we can infer the following relationship:

Fig. 6 Box plots of the distributions of the normalized number of iterations for each accelerated
algorithm. (a) Four colors, (b) 16 colors, (c) 64 colors, and (d) 256 colors (in each subfigure, the x
and y axes represent the normalized number of iterations and the CQ algorithms, respectively).

Table 10 Mean number of iterations rank of each CQ algorithm
over the dataset for K ∈ f4; 16; 64; 256g (higher ranks are better).

Algorithm K ¼ 4 K ¼ 16 K ¼ 64 K ¼ 256 Mean

ALKM 2.80 2.36 2.06 2.21 2.35

AJKM12 3.92 3.28 3.06 2.75 3.25

AJKM14 4.91 4.31 3.73 3.63 4.14

AJKM16 5.12 4.87 4.60 4.38 4.74

AJKM18 3.26 5.01 4.89 4.61 4.44

AJKM199 1.00 1.19 2.68 3.43 2.07

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-17 Sep∕Oct 2024 • Vol. 33(5)

EQ-TARGET;temp:intralink-;sec3.2.4;114;565fAJKM14;AJKM16g > AJKM12 > fALKM;AJKM18g > AJKM199;

which can be interpreted as follows:

• fAJKM14;AJKM16g is the best group of algorithms.
• AJKM199 is the worst algorithm.
• AJKM12 and fALKM;AJKM18g are in between, with the former being better than the

latter.

For K ¼ 16, all the null hypotheses are rejected but the following: “AJKM16 versus
AJKM18.” Combined with the mean rank information for K ¼ 16 given in Table 10, we can
infer the following relationship:

EQ-TARGET;temp:intralink-;sec3.2.4;114;432fAJKM16;AJKM18g > AJKM14 > AJKM12 > ALKM > AJKM199;

which can be interpreted as follows:

• fAJKM16;AJKM18g is the best group of algorithms.
• AJKM199 is the worst algorithm.
• AJKM14, AJKM12, and ALKM are in between, where AJKM14 is better than AJKM12,

which is better than ALKM.

For K ¼ 64, all the null hypotheses are rejected but the following two: “AJKM12 versus
AJKM199” and “AJKM16 versus AJKM18.” Combined with the mean rank information for
K ¼ 64 given in Table 10, we can infer the following relationship:

EQ-TARGET;temp:intralink-;sec3.2.4;114;293fAJKM16;AJKM18g > AJKM14 > fAJKM12;AJKM199g > ALKM;

which can be interpreted as follows:

• fAJKM16;AJKM18g is the best group of algorithms.
• ALKM is the worst algorithm.
• AJKM14 and fAJKM12;AJKM199g are in between, where the former is better than the

latter.

For K ¼ 256, all the null hypotheses are rejected but the following three: “ALKM versus
AJKM12,” “AJKM14 versus AJKM199,” and “AJKM16 versus AJKM18.” Combined with
the mean rank information for K ¼ 256 given in Table 10, we can infer the following relation-
ship:

EQ-TARGET;temp:intralink-;sec3.2.4;114;142fAJKM16;AJKM18g > fAJKM14;AJKM199g > fALKM;AJKM12g;
which can be interpreted as follows:

• fAJKM16;AJKM18g is the best group of algorithms.
• fALKM;AJKM12g is the worst group of algorithms.
• fAJKM14;AJKM199g is in between.

Table 11 Results of the Friedman and Iman–Davenport tests for
number of iterations for K ∈ f4; 16; 64; 256g (✓: rejected; ✗: not
rejected).

K

Friedman (α ¼ 0.05) Iman–Davenport (α ¼ 0.05)

χ2r ð5Þ p H0 F r ð5;495Þ p H0

4 330.521 1.81 × 10−10 ✓ 193.072 −2.22 × 10−16 ✓

16 328.857 1.78 × 10−10 ✓ 190.232 9.11 × 10−113 ✓

64 174.911 1.11 × 10−10 ✓ 53.266 −2.22 × 10−16 ✓

256 121.959 8.95 × 10−11 ✓ 31.938 −2.22 × 10−16 ✓

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-18 Sep∕Oct 2024 • Vol. 33(5)

3.2.5 Summary and additional comments

To summarize, our statistical significance analyses demonstrated that LKM and JKM with
α ∈ f1.2; 1.4; 1.6; 1.8; 1.99g have similar effectiveness when K is small (i.e., K ∈ f4; 16g).
For larger K values (i.e., K ∈ f64; 256g), JKM199 is significantly more effective than its peers,
and forK ¼ 256, JKM18 shares the top spot with JKM199 or is a second best. On the other hand,
the algorithms exhibit a noticeably more varied behavior in terms of efficiency. In general,
AJKM16 and AJKM18 are the most efficient algorithms, whereas ALKM and AJKM199 are
the least efficient. Hence, an accelerated JKM implementation with α ¼ 1.8 strikes the best
balance between effectiveness and efficiency and is a strong alternative to an accelerated imple-
mentation of the popular LKM algorithm. Although AJKM18 is not significantly more effective
than ALKM (except for K ¼ 256), the former is significantly more efficient than the latter.
For example, AJKM18 took, on average, ≈75, 200, 500, and 1500 ms to quantize a 768 × 512

(or 512 × 768) image to 4, 16, 64, and 256 colors, respectively, whereas the corresponding aver-
age CPU times for ALKM were ≈100, 400, 1000, and 2500 ms, respectively. Interestingly,
Drezner68 also empirically determined α ¼ 1.8 to be the best relaxation factor value in a different
application domain (i.e., facility location).

At first glance, Figs. 5 and 6 appear to contradict each other, at least for K ∈ f16; 64; 256g.
There is a simple explanation for this. For LKM and JKM, the per-iteration time complexity of
the assignment and update steps are OðNKÞ and OðKÞ, respectively. As N ≫ K in CQ appli-
cations, the algorithms spend most of their time in the assignment step. In fact, these algorithms
perform exactly NK distance computations in every iteration. Therefore, there is a near-perfect
correlation (>0.995) between CPU time and the number of iterations for plain algorithms. This
phenomenon can be observed by comparing the bottom half of each box plot in Fig. 5 (corre-
sponding to LKM and JKM with α ∈ f1.2; 1.4; 1.6; 1.8g) to the corresponding box plot in Fig. 6.
On the other hand, for ALKM and AJKM, thanks to the TIE technique, the number of distance
computations performed per iteration decreases rapidly as the centers stabilize. In other words,
these algorithms become progressively faster as they iterate. This is why CPU time is not nec-
essarily proportional to the number of iterations for the accelerated algorithms.

Table 12 Results of the Bergmann–Hommel test for number of
iterations for K ∈ f4; 16; 64; 256g (✓: rejected; ✗: not rejected).

Null hypothesis K ¼ 4 K ¼ 16 K ¼ 64 K ¼ 256

ALKM versus AJKM12 ✓ ✓ ✓ ✗

ALKM versus AJKM14 ✓ ✓ ✓ ✓

ALKM versus AJKM16 ✓ ✓ ✓ ✓

ALKM versus AJKM18 ✗ ✓ ✓ ✓

ALKM versus AJKM199 ✓ ✓ ✓ ✓

AJKM12 versus AJKM14 ✓ ✓ ✓ ✓

AJKM12 versus AJKM16 ✓ ✓ ✓ ✓

AJKM12 versus AJKM18 ✓ ✓ ✓ ✓

AJKM12 versus AJKM199 ✓ ✓ ✗ ✓

AJKM14 versus AJKM16 ✗ ✓ ✓ ✓

AJKM14 versus AJKM18 ✓ ✓ ✓ ✓

AJKM14 versus AJKM199 ✓ ✓ ✓ ✗

AJKM16 versus AJKM18 ✓ ✗ ✗ ✗

AJKM16 versus AJKM199 ✓ ✓ ✓ ✓

AJKM18 versus AJKM199 ✓ ✓ ✓ ✓

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-19 Sep∕Oct 2024 • Vol. 33(5)

Fig. 7 CPU time (in milliseconds) for each image for LKM, JKM18, ALKM, and AJKM18. (a) Four
colors, (b) 16 colors, (c) 64 colors, and (d) 256 colors (in each subfigure, the x and y axes represent
the image numbers and the CPU times, respectively).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-20 Sep∕Oct 2024 • Vol. 33(5)

Now that we examined the effectiveness and efficiency of LKM and JKM (with various
α values), let us compare the top performer, JKM with α ¼ 1.8, both in its plain (i.e., JKM18)
and accelerated (i.e., AJKM18) variants against the popular LKM algorithm and its accelerated
variant, ALKM. Figure 7 plots each algorithm’s CPU time in milliseconds (averaged over
10 independent runs) for each image for K ∈ f4; 16; 64; 256g. From Fig. 5, the ordering of the
algorithms (from the slowest to the fastest) appears to be roughly LKM, JKM18, ALKM, and
AJKM18. Figure 7 confirms this observation and clearly shows that the efficiency differences
between the plain and accelerated algorithms (i.e., LKM versus ALKM and JKM18 versus
AJKM18) increase with K, which is not surprising because the overhead associated with the
TIE technique pays off only if K is sufficiently large, and in general, the larger the K value,
the fewer distance computations TIE performs compared with plain LKM/JKM.

3.3 Subjective Assessment
Figures 8, 10, 12, and 14 show the Columbia crew, Trade Fair Tower, coloring pencils, and color
checker images, respectively, quantized using LKM and JKM with three different α values.

Fig. 8 Columbia crew (148,399) colors and its various quantized versions (four colors).
(a) Columbia crew. (b) LKM (MSE ¼ 2753). (c) JKM12 (MSE ¼ 2753). (d) JKM18 (MSE ¼ 2221).
(e) JKM199 (MSE ¼ 2221).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-21 Sep∕Oct 2024 • Vol. 33(5)

On the other hand, Figs. 9, 11, 13, and 15 show the error images for Figs. 8, 10, 12, and 14,
respectively. In each case, the error image is obtained by amplifying the pixel-wise normalized
Euclidean differences between the input and output by a factor of 4 and then negating them for
better visualization.20 Hence, the cleaner (or lighter) the error image, the better the reproduction
of the input image. For small K values (i.e., K ∈ f4; 16g), we can observe the differences among
the algorithms more easily. For example, both LKM and JKM12 cause significant color shifts/
losses in the skin tones and the white parts of the spacesuits and helmets when quantizing the
Columbia crew image to four colors (refer to Figs. 8 and 9). By contrast, JKM18 and JKM199
produce much better results despite the extremely small number of colors they are allowed. As
another example, consider the task of quantizing the color checker image to 256 colors. At first,
this task may appear to be much easier, as the algorithms are asked to represent 24 color patches
with 256 colors. However, the large and uniformly colored patches are challenging to quantize
without generating false contours. In addition, some of the achromatic colors at the bottom row
are visually difficult to distinguish. In this case, all four quantized images appear nearly identical.
However, an inspection of the corresponding error images reveals that the algorithms can be
differentiated by the bottom rows of their outputs. In particular, it is evident that JKM18 and
JKM199 reproduce the input more accurately than LKM and JKM14.

4 Conclusions and Future Work
In this paper, we investigated the performance of two k-means variants, namely, LKM and JKM,
on the color quantization problem. LKM is a very popular partitional clustering algorithm, which
alternates between an assignment step (where each data point is assigned to the nearest cluster
center) and an update step (where each center is recomputed as the centroid of its cluster). On the
other hand, JKM is a relatively unknown variant of LKM featuring a different update step
(where each center is recomputed as a linear combination of itself and the centroid of its cluster).
JKM is parameterized by the coefficient α of the linear combination, whose value primarily
influences the algorithm’s convergence speed. For each algorithm, we presented three imple-
mentations: plain (LKM and JKM), weighted (WLKM and WJKM), and accelerated and
weighted (ALKM and AJKM, respectively). Although all three implementations of a given algo-
rithm produce identical results, they each have markedly different computational requirements.

Fig. 9 Error images corresponding to Fig. 8. (a) LKM. (b) JKM12. (c) JKM18. (d) JKM199.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-22 Sep∕Oct 2024 • Vol. 33(5)

Fig. 10 Trade Fair Tower (72,299 colors) and its various quantized versions (16 colors). (a) Trade
Fair Tower. (b) LKM (MSE ¼ 216). (c) JKM12 (MSE ¼ 216). (d) JKM18 (MSE ¼ 191). (e) JKM199
(MSE ¼ 191).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-23 Sep∕Oct 2024 • Vol. 33(5)

The weighted implementation is faster than the plain one because it operates on a smaller dataset,
whereas the accelerated and weighted implementation is faster than the weighted one because it
eliminates unnecessary distance computations (using the triangle inequality). Extensive experi-
ments conducted on the CQ100 dataset allowed us to evaluate the effectiveness and efficiency of
each algorithm for various numbers of colors. We determined that the choice of α primarily
impacts JKM’s efficiency, with larger α values often performing better (unless α is too large,
e.g., 1.99). In our application, JKM with α ¼ 1.8 achieved the best trade-off between effective-
ness and efficiency, leading to a color quantizer that is at least as effective as the popular LKM but
significantly more efficient. In addition, JKM is no more difficult to implement than LKM.
Future work includes developing an adaptive scheme to determine a near-optimal α value for
a given input image and exploring the applicability of JKM to higher-dimensional clustering
problems.

Fig. 11 Error images corresponding to Fig. 10. (a) LKM. (b) JKM12. (c) JKM18. (d) JKM199.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-24 Sep∕Oct 2024 • Vol. 33(5)

Fig. 12 Coloring pencils (115,201 colors) and its various quantized versions (64 colors).
(a) Coloring pencils. (b) LKM (MSE ¼ 149). (c) JKM16 (MSE ¼ 152). (d) JKM18 (MSE ¼ 137).
(e) JKM199 (MSE ¼ 135).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-25 Sep∕Oct 2024 • Vol. 33(5)

Fig. 14 Color checker (30,593 colors) and its various quantized versions (256 colors). (a) Color
checker. (b) LKM (MSE ¼ 14). (c) JKM14 (MSE ¼ 14). (d) JKM18 (MSE ¼ 11). (e) JKM199
(MSE ¼ 10).

Fig. 13 Error images corresponding to Fig. 12. (a) LKM. (b) JKM16. (d) JKM18. (d) JKM199.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-26 Sep∕Oct 2024 • Vol. 33(5)

Disclosures
The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Code and Data Availability
The source code of the k -means–based color quantizers described in this paper will be made
available at https://github.com/HarrisonBounds. In addition, the 2400 output images (six CQ
algorithms ×100 input images × jf4; 16; 64; 256gj colors) and Microsoft Excel worksheets contain-
ing the MSE and MS-SSIM for each input/output image combination will be released as part of the
next version of CQ100 (https://data.mendeley.com/datasets/vw5ys9hfxw/3).

Acknowledgments
This material is based upon work supported by the National Science Foundation (Grant No. OIA-
1946391). Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science
Foundation. The authors gratefully acknowledge the open-source web-based graphing software
PlotsOfData.69

References
1. R. Ramanath et al., “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
2. P. Heckbert, “Color image quantization for frame buffer display,” ACM SIGGRAPH Comput. Graph. 16(3),

297–307 (1982).
3. M. Orchard and C. Bouman, “Color quantization of images,” IEEE Trans. Signal Process. 39(12),

2677–2690 (1991).
4. X. Wu, “Color quantization by dynamic programming and principal analysis,” ACM Trans. Graph. 11(4),

348–372 (1992).
5. A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput. Surv. 31(3), 264–323

(1999).
6. M. E. Celebi, “Forty years of color quantization: a modern, algorithmic survey,” Artif. Intell. Rev. 56,

13953–14034 (2023).
7. R. S. Gentile, J. P. Allebach, and E. Walowit, “Quantization of color images based on uniform color spaces,”

J. Imaging Technol. 16(1), 11–21 (1990).

Fig. 15 Error images corresponding to Fig. 14. (a) LKM. (b) JKM14. (c) JKM18. (d) JKM199.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-27 Sep∕Oct 2024 • Vol. 33(5)

https://github.com/HarrisonBounds
https://github.com/HarrisonBounds
https://data.mendeley.com/datasets/vw5ys9hfxw/3
https://doi.org/10.1109/MSP.2005.1407713
https://doi.org/10.1145/965145.801294
https://doi.org/10.1109/78.107417
https://doi.org/10.1145/146443.146475
https://doi.org/10.1145/331499.331504
https://doi.org/10.1007/s10462-023-10406-6

8. E. Forgy, “Cluster analysis of multivariate data: efficiency vs. interpretability of classifications,” Biometrics
21, 768 (1965).

9. R. C. Jancey, “Multidimensional group analysis,” Austr. J. Botany 14(1), 127–130 (1966).
10. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun. 28(1),

84–95 (1980).
11. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
12. Y. C. Hu and M. G. Lee, “K-means based color palette design scheme with the use of stable flags,”

J. Electron. Imaging 16(3), 033003 (2007).
13. Y. C. Hu and B. H. Su, “Accelerated K-means clustering algorithm for colour image quantization,” Imaging

Sci. J. 56(1), 29–40 (2008).
14. Y. C. Hu, M. G. Lee, and P. Tsai, “Colour palette generation schemes for colour image quantization,”

Imaging Sci. J. 57(1), 46–59 (2009).
15. M. E. Celebi, “Fast color quantization using weighted sort-means clustering,” J. Opt. Soc. Am. A 26(11),

2434–2443 (2009).
16. M. E. Celebi, “Improving the performance of K-means for color quantization,” Image Vis. Comput. 29(4),

260–271 (2011).
17. Q. Wen and M. E. Celebi, “Hard vs. fuzzy C-means clustering for color quantization,” EURASIP J. Adv.

Signal Process. 2011(1), 118–129 (2011).
18. S. C. Huang, “An efficient palette generation method for color image quantization,” Appl. Sci. 11(3), 1043

(2021).
19. A. D. Abernathy and M. E. Celebi, “The incremental online k-means clustering algorithm and its application

to color quantization,” Expert Syst. Appl. 207, 117927 (2022).
20. M. E. Celebi and M. L. Pérez-Delgado, “CQ100: a high-quality image dataset for color quantization

research,” J. Electron. Imaging 32(3), 033019 (2023).
21. “The android open source project,” CelebiQuantizer.java, https://tinyurl.com/bd24un54 (2021).
22. X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst. 14(1), 1–37 (2008).
23. M. E. Celebi, H. Kingravi, and P. A. Vela, “A comparative study of efficient initialization methods for

the K-means clustering algorithm,” Expert Syst. Appl. 40(1), 200–210 (2013).
24. S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence theorem and charac-

terization of local optimality,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 81–87 (1984).
25. L. M. Ostresh, Jr., “On the convergence of a class of iterative methods for solving the weber location prob-

lem,” Oper. Res. 26(4), 597–609 (1978).
26. A. Hadjidimos, “Successive overrelaxation (SOR) and related methods,” J. Comput. Appl. Math. 123(1–2),

177–199 (2000).
27. B. C. Peters, Jr. and H. F. Walker, “An iterative procedure for obtaining maximum-likelihood estimates of

the parameters for a mixture of normal distributions,” SIAM J. Appl. Math. 35(2), 362–378 (1978).
28. B. C. Peters, Jr. and H. F. Walker, “The numerical evaluation of the maximum-likelihood estimate of a subset

of mixture proportions,” SIAM J. Appl. Math. 35(3), 447–452 (1978).
29. M. R. Anderberg, Cluster Analysis for Applications, Academic Press (1973).
30. G. Hamerly and J. Drake, “Accelerating Lloyd’s algorithm for K-means clustering,” in Partitional Clustering

Algorithms, M. E. Celebi, Ed., pp. 41–78, Springer (2015).
31. S. Wang, Y. Sun, and Z. Bao, “On the efficiency of K-means clustering: evaluation, optimization, and algo-

rithm selection,” Proc. VLDB Endowment 14(2), 163–175 (2020).
32. T. Kanungo et al., “An efficient K-means clustering algorithm: analysis and implementation,” IEEE Trans.

Pattern Anal. Mach. Intell. 24(7), 881–892 (2002).
33. C. Elkan, “Using the triangle inequality to accelerate K-means,” in Proc. 20th Int. Conf. Mach. Learn.,

pp. 147–153 (2003).
34. J. Z. C. Lai and Y. C. Liaw, “Improvement of the K-means clustering filtering algorithm,” Pattern Recognit.

41(12), 3677–3681 (2008).
35. R. R. Curtin, “A dual-tree algorithm for fast k-means clustering with large k,” in Proc. SIAM Int. Conf. Data

Mining, pp. 300–308 (2017).
36. S. H. Chen and J. S. Pan, “Fast search algorithm for VQ-based recognition of isolated words,” in IEE Proc. I

(Commun., Speech and Vis.), Vol. 136, pp. 391–396 (1989).
37. T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” Theor. Comput. Sci. 38(2–3),

293–306 (1985).
38. M. E. Dyer and A. M. Frieze, “A simple heuristic for the P-centre problem,” Oper. Res. Lett. 3(6), 285–288

(1985).
39. G. Houle and E. Dubois, “Quantization of color images for display on graphics terminals,” in Proc. IEEE

Glob. Telecommun. Conf., pp. 1138–1142 (1986).
40. N. Goldberg, “Colour image quantization for high resolution graphics display,” Image Vis. Comput. 9(5),

303–312 (1991).

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-28 Sep∕Oct 2024 • Vol. 33(5)

https://doi.org/10.1071/BT9660127
https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1117/1.2762241
https://doi.org/10.1179/174313107X176298
https://doi.org/10.1179/174313107X176298
https://doi.org/10.1179/174313109X373675
https://doi.org/10.1364/JOSAA.26.002434
https://doi.org/10.1016/j.imavis.2010.10.002
https://doi.org/10.1186/1687-6180-2011-118
https://doi.org/10.1186/1687-6180-2011-118
https://doi.org/10.3390/app11031043
https://doi.org/10.1016/j.eswa.2022.117927
https://doi.org/10.1117/1.JEI.32.3.033019
https://tinyurl.com/bd24un54
https://tinyurl.com/bd24un54
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.eswa.2012.07.021
https://doi.org/10.1109/TPAMI.1984.4767478
https://doi.org/10.1287/opre.26.4.597
https://doi.org/10.1016/S0377-0427(00)00403-9
https://doi.org/10.1137/0135032
https://doi.org/10.1137/0135036
https://doi.org/10.14778/3425879.3425887
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1016/j.patcog.2008.06.005
https://doi.org/10.1137/1.9781611974973.34
https://doi.org/10.1137/1.9781611974973.34
https://doi.org/10.1049/ip-i-2.1989.0059
https://doi.org/10.1049/ip-i-2.1989.0059
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0167-6377(85)90002-1
https://doi.org/10.1016/0262-8856(91)90035-N

41. Z. Xiang, “Color image quantization by minimizing the maximum intercluster distance,” ACM Trans. Graph.
16(3), 260–276 (1997).

42. S. Thompson, M. E. Celebi, and K. H. Buck, “Fast color quantization using Macqueen’s K-means algo-
rithm,” J. Real-Time Image Process. 17(5), 1609–1624 (2020).

43. “CQ100: a high-quality image dataset for color quantization research,” https://data.mendeley.com/datasets/
vw5ys9hfxw/3 (2023).

44. Z. Wang et al., “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image
Process. 13(4), 600–612 (2004).

45. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,”
in Proc. 37th Asilomar Conf. Signals, Syst. & Comput., Vol. 2, pp. 1398–1402 (2003).

46. Z. Wang and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures,”
IEEE Signal Process. Mag. 26(1), 98–117 (2009).

47. D. Brunet, E. R. Vrscay, and Z. Wang, “On the mathematical properties of the structural similarity index,”
IEEE Trans. Image Process. 21(4), 1488–1499 (2012).

48. G. Ramella, “Evaluation of quality measures for color quantization,” Multimedia Tools Appl. 80, 32975–
33009 (2021).

49. M. L. Pérez-Delgado and M. E. Celebi, “A comparative study of color quantization methods using various
image quality assessment indices,” Multimedia Syst. 30, 40 (2024).

50. S. García and F. Herrera, “An extension on “statistical comparisons of classifiers over multiple data sets” for
all pairwise comparisons,” J. Mach. Learn. Res. 9, 2677–2694 (2008).

51. M. Friedman, “The use of ranks to avoid the assumption of normality implicit in the analysis of variance,”
J. Am. Stat. Assoc. 32(200), 675–701 (1937).

52. R. L. Iman and J. M. Davenport, “Approximations of the critical region of the friedman statistic,” Commun.
Stat. - Theory Methods 9(6), 571–595 (1980).

53. J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res. 7, 1–30
(2006).

54. J. Luengo, S. García, and F. Herrera, “A study on the use of statistical tests for experimentation with neural
networks: analysis of parametric test conditions and non-parametric tests,” Expert Syst. Appl. 36(4),
7798–7808 (2009).

55. S. García et al., “A study of statistical techniques and performance measures for genetics-based machine
learning: accuracy and interpretability,” Soft Comput. 13, 959–977 (2009).

56. S. García et al., “A study on the use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 special session on real parameter optimization,” J. Heuristics
15(6), 617–644 (2009).

57. J. Carrasco et al., “Recent trends in the use of statistical tests for comparing swarm and evolutionary
computing algorithms: practical guidelines and a critical review,” Swarm Evol. Comput. 54, 100665 (2020).

58. W. W. Daniel, Applied Nonparametric Statistics, 2nd ed., PWS-KENT Publishing Company, (1990).
59. B. Bergmann and G. Hommel, “Improvements of general multiple test procedures for redundant systems of

hypotheses,” in Multiple Hypotheses Testing, P. Bauer and G. Hommel andE. Sonnemann, Eds., pp. 100–
115, Springer (1988).

60. J. Derrac et al., “A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput. 1(1), 3–18 (2011).

61. R. M. O. Cruz, R. Sabourin, and G. D. C. Cavalcanti, “Dynamic classifier selection: recent advances and
perspectives,” Inf. Fusion 41, 195–216 (2018).

62. U. Johansson et al., “Rule extraction with guarantees from regression models,” Pattern Recognit. 126,
108554 (2022).

63. G. Hommel and G. Bernhard, “Bonferroni procedures for logically related hypotheses,” J. Stat. Plann.
Inference 82(1–2), 119–128 (1999).

64. P. B. Nemenyi, “Distribution-free multiple comparisons,” PhD thesis, Princeton University (1963).
65. S. Holm, “A simple sequentially rejective multiple test procedure,” Scand. J. Stat. 6(2), 65–70 (1979).
66. J. P. Shaffer, “Modified sequentially rejective multiple test procedures,” J. Am. Stat. Assoc. 81(395), 826–831

(1986).
67. G. Hommel and G. Bernhard, “A rapid algorithm and a computer program for multiple test procedures using

logical structures of hypotheses,” Comput. Methods Programs Biomed. 43(3–4), 213–216 (1994).
68. Z. Drezner, “A note on the weber location problem,” Ann. Oper. Res. 40(1), 153–161 (1992).
69. M. Postma and J. Goedhart, “PlotsOfData—a web app for visualizing data together with their summaries,”

PLoS Biol. 17(3), e3000202 (2019).

Harrison Bounds received his BS degree in computer science from the University of Central
Arkansas, United States. He is currently pursuing his MS degree in robotics at Northwestern
University, United States.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-29 Sep∕Oct 2024 • Vol. 33(5)

https://doi.org/10.1145/256157.256159
https://doi.org/10.1007/s11554-019-00914-6
https://data.mendeley.com/datasets/vw5ys9hfxw/3
https://data.mendeley.com/datasets/vw5ys9hfxw/3
https://data.mendeley.com/datasets/vw5ys9hfxw/3
https://data.mendeley.com/datasets/vw5ys9hfxw/3
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/TIP.2011.2173206
https://doi.org/10.1007/s11042-021-11385-y
https://doi.org/10.1007/s00530-023-01206-7
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/03610928008827904
https://doi.org/10.1080/03610928008827904
https://doi.org/10.1016/j.eswa.2008.11.041
https://doi.org/10.1007/s00500-008-0392-y
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1016/j.swevo.2020.100665
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.inffus.2017.09.010
https://doi.org/10.1016/j.patcog.2022.108554
https://doi.org/10.1016/S0378-3758(99)00035-X
https://doi.org/10.1016/S0378-3758(99)00035-X
https://doi.org/10.2307/4615733
https://doi.org/10.1080/01621459.1986.10478341
https://doi.org/10.1016/0169-2607(94)90072-8
https://doi.org/10.1007/BF02060474
https://doi.org/10.1371/journal.pbio.3000202

M. Emre Celebi received his PhD in computer science and engineering from the University of
Texas at Arlington, United States. He is currently a professor and the chair of the Department
of Computer Science and Engineering at the University of Central Arkansas, United States. He
has published nearly 200 articles on image processing/analysis and data mining. According to
Google Scholar, his research has received over 18; 000 citations so far. He is a senior member
of the IEEE and a fellow of the SPIE.

Jordan Maxwell: Biography is not available.

Bounds, Celebi, and Maxwell: Color quantization using an accelerated Jancey. . .

Journal of Electronic Imaging 053052-30 Sep∕Oct 2024 • Vol. 33(5)

